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A large number of papers have been devoted to the problem of orbit evolution for artificia 

earth satellites subject to aerodynamic forces. The perturbation of satellite motion by the 

atmosphere is quite complex in character and significantly complicates the investigation 

of the problem. The basic difficulty is that the action of the atmosphere leads to a slow 

evolution of the satellite orbit and the numerical integration of the exact equations of mo- 

tion therefore consumes a large amount of machine time. There thus appears to be a need 

for either approximate analytical solutions or approximate algorithms for the numerical eva- 

luation of the problem. 

A special two-cycle integration method has been proposed for the numerical integration 

of the satellite’s equations of motion [l, 21. The analytic investigation of the problem can 

be found in the references [3-s]. A similar review of foreign work on this subject is given 

in [6]. 

A number of problems of the motion of a satellite subject to aerodynamic forces and 

moments is solved in the present paper using the method of averaging [7,8] and the small 

parameter method. The averaging method is utilized in the form developed by V.M. Volosov 

[8] for systems with a rapidly rotating phase. The possible application of this method in 

the solution of problems of satellite dynamics was pointed out by N.N. Moiseev in [9]. 

Averaging of the equations of motion was carried out using the Laplace method [lo], 

which eliminated the cumbersome computations involved in the usually applied expansions 

of the averaging functions in series in the eccentricity or Fourier series and enabled a 

number of different problems connected with the motion of the satellite and its mass center 

in orbits of high eccentricity to be solved uniquely. A number of new formulas are obtained 

for determining satellite lifetime. Certain possible trajectories of an aerodynamically 
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controlled satellite are considered. A planar relative motion under the action of a small 

restoring aerodynamic moment is investigated. 

1. Let us write the equations of satellite motion in osculating elements neglecting the 

non-central gravitational field of the earth and rotation of the atmosphere. 

0 cos 6) -+ eC, (a) sill 61 

de 
P’s -- 

dt= 2m 
2C, (a) (e + cos 

da 
dt= 

- g [2C, (a) sin 6 + 

da d0 - IfiF 
dl r2 dt 

(1.1) 

Here p is the focal parameter of the osculating conical section, e is the eccentricity, 

(I is the angular location of the line of apsides, 6 is the true anomaly, p is the density of 

the atmosphere, C, (a), Cy (a) are the drag and lift aerodynamic coefficients dependent 

on the angle of attack a, S is the characteristic area of the satellite (for example, the mid- 

section), and m is its mass. 

The velocity v and the radius r are determined from the formulas for Keplerian motion 

lf 
- 

v= fvl + 2ecos6 + e2, 

We assume that the density varies exponentially 

p = p1 exp ‘+ = plpO 

P 
‘= 1 +ecos6 

(1.2) 

(1.3) 

Here p1 is the density at some characteristic braking altitude rt, and H is the height 

of the homogeneous atmosphere. 

The atmospheric resistance will be considered to he small. Let us therefore take as 

the small parameter the quantity 

e = &F,S I 2m (1.4) 

which is eqnal to the aerodynamic overlead at the height rI for c = 0 and C: + Ci = 1. 

Let us introduce a new focal parameter and nondimensional perigee height 

p” = Prl-l, r,O = rx. Fl-l. We must change the independent variable Z = t)/~~t-‘lz. 

The upper zero index for nondimensional quantities will be omitted in the following. As a 

result of these transformations the system (1.1) is reduced to the standard form of a sys- 

tem with rapidly rotating phase 

dp 
dr= 

- 2&p JjY [C, (LX) + Ge*] 1/l + 2e cos 6 + e” (1.5) 
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de - = - E [2 (e + ~0s 8) C, (3) $- (” y’_l”,ll,t),_f” “1 VI + 2e cos 6 + e2 
dz , 

(1.6) 

do [se -/- (1 + e?) cos 61 Cu (a) 
-_= 
dT 

--% 
e VP 

2 sin6C,(a) + 
1 + e cos 6 1 J1+2cos8+e2 

(1.7) 

d6 (1 +- e cos 6)2 da 

dr= 
-- 

pJ/2 dt (1.8) 

Letting E = 0, equations (1.5) -(1.8) yield the equation of unperturbed motion 

d6 (1 + e cos S)3 

dz= pS/z 
(p = const, e = const) (1.9) 

Integrating, we find 

T-To = (j--$)Y.[2arc tan(eer*tan+ - ’ vl-ee” sin6] 
1 +ecos6 

(l.lo) 

For e < 1 the unperturbed motion is periodic with a period in 7 equal to 

T = 2~~;” (1 - @ (1.11) 

In order to construct the first approximation we average the right-hand parts of the 

system (l.S)-(1.7) in rover a period of the unperturbed motion T. The solution of the 

equations so derived for slowly varying variables p, e, (T will approximate to the exact 

solution of the system (1.5) - (1.8) with an error CY E in an interval of change 7’* ~‘l.The sol- 

ution (1.10) for a rapidly varying variable 7 has an error Q 1 in the same interval of change of 7. 

For 

Laplace 

For 

orbits with large eccentricity the system (1.5) -(1.8) can be averaged using the 

method [lo]. 

example, let us evaluate the integral 

T 

I= 1 
s Tps (1 - e2f’% o 

p1/1 +2ecos6+e2dz 
(1.12) 

The function p (6 will be given in the form 

hp (cos 6 - 1) 
p = p2 exp (I+ e)(l+ e cos 6) ( h= F, pz=exp 

rl(l +e-_p)) (1.13) 

H (1 + e) 

The true anomaly 6 is taken as the variable of integration. Then utilizing (1.9) and 

(1.10) we get 
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If the orbit eccentricity is sufficiently large (e > 0.1). then A>> 1. The nondimensional 

coefficient h can be a large positive parameter. (For orbits with the elements e = 0.2, 

prt= 7842 km, and H = 20 km we have x = 65.32). 

In the neighborhood of 8 = 0 the asymptotic expansion of the integral (1.14) occurs in 

fractional powers of h 

I=& If ( *) + 0 (P) (1.15) 

The remaining integrals of the system (1.5) -(1.7) are computed analogously. Then for 

the case u = const we get 

dp 2eC,pz (1 - eaf’a 

dz=- 1/m I+%$? ( 
(1.16) 

de 2eC,pa (1 + e) (1 - ea)% 

( I+ 
3e2 - 4e - 3 

dz=- p f2nh HAP 1 
(1.17) 

do 

dz=- 

cCy’“re +s- e2Pn (I + 3ea +s;; - 3 ) 
(1.18) 

The right-hand parts of the equations (1.16) -(1.18) exclude terms of the order eQ,,-%. 

To an accuracy of terms of the order ep,l,s’h the equation for the nondimensional height 

of the perigee is obtained as 

dr 
-A_=- 

efx+J 

dz 
(1.19) 

It follows from (1.19) that if in the system (1.16) -(1.18) terms of order &p2A,-“, are 

excluded, the equations will describe the motion of a satellite with constant perigee height. 

Taking eccentricity as the independent variable we get from the equations (1.16) -(1.19) 

dr L= H 
( l+H 

3 - 4e - 3e2 
de 2e (1 + e)rl 4e (1 + e) r,rl 1 

do 

de = H ) 
r,n (1 + 9) 

(1.20) 

(1.21) 

The system (1.20) and (1.21) contains the small parameter h = H/r, and therefore its 
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solution can be found by the small parameter method. The solution of (1.20) is sought in 

the form of the series 

r, = ‘;r. + ht + h2q + . . . . (1.22) 

Substituting (1.22) into (1.20), expanding the right-hand side of the eqnation in a 

series in powers of h and equating the coefficients of like powers of h to determine the 

functions & g we obtain the system 

df 1 dtl 3-4e-33k 

de= 2e (1 + e) ’ de= 8ea (1 + e)¶ rzO 

the solution of which yields the law of variation of the nondimensional height of the oorigee 

Solving (1.21) by analogous means we get 

(1.24) 

The zero index in (1.23) and (1.24) indicates that the value of the functions is given 

at the initial instant of motion. From (1.23) and (1.24) we find 

where pa is the density at height rrrO referred to the density at the characteristic height r,. 

Substituting (1.25) into (1.16) -(1.18), th e averaged system will be evaluated with an 

error - &‘f.-“, Its solution will approximate to the exact solution of (1.1) in the interval 

Z - e-r with an error of the order max [e, A-“]. 

The calculation of the duration of motion is reduced to the quadrature 

where 

2n ‘i: ‘O))“’ [ AF (eo) - AF (e) + F] 
% 

(1.26) 

A=l+&la&+$- 3+-(y+yoy 
% XI 

F(e) = 3+e 
-+L 4(1+e) 1/1-e 81/z 

In VT- vi- 

v-z+ v-l- 

J 1-j 1Ile 
e 

1 + e (1 + ey (1 - ef/* 
de 

en 

If terms of order h” are neglected iu (1.23) and terms of order e-l@,are neglected iu 

(1.26). we find the formulas found by P.E. El’iasberg [S] 
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r z=z,+~ 
2eC,po ( 

2”‘ieT e”J)“’ [F (eo) -F (e)] 

Let us review certain results of calculations based on the approximate formulas (1.23) 

and (1.26). The initial elements of the satellite orbit are eo = 0.4, r,p = 9142 km, and the 

height of the homogeneous atmosphere H = 20 km. The characteristic drag height is as- 

sumed as rl = 6520 km. The aerodynamic characteristics of the satellite are as follows : 

C 
x 

= 1, Cy = 0, and E = 0.001. 

From the integration of the exact equations of motion it was determined that after 530 

revolutions around the earth, the loss of perigee height and the eccentricity of the satellite 

are rl (rn, - r,J = 13.120 km, e = 0.084685, and the duration of motion t = 1256.695 hrs. 

From the approximate formulas (1.23) and (1.26) for c = 0.084685 we have r1 (rn, - rtr) = 

13.094 km, and r = 1256.708 hrs. In this example the satellite evolution is calculated with 

great accuracy since here over a large segment of the trajectory the quantity h-“‘z is of 

order E. Consequently, the solution of the approximate system has an error % E. 

We have assumed an isothermal model of the atmosphere. In practice, for the earth’s 

atmosphere the increase in the drag height reduces the height H of the homogeneous atmos- 

phere. This effect can be taken into account by interpolation of the function H (r) and ap- 

plication of the above method of calculation. The motion of the satellite is affected by a 

number of factors not yet mentioned : the nonsphericity of the earth, lunar and solar perturb- 

ations, etc. All these effects can be represented aa an additional small perturbation in the 

system (1.5) -(1.8) and by application the averaging method. 

2. Let us consider the aerodynamic control of the satellite for which the perigee height 

increases. Such motion can be obtained if at the instant of perigee passage the angle of 

attack reverses sign, and 

c, (4 = 1 --Cl<0 for 0 < ti < n 

C, > 0 for x < 6< 2n 
(2.1) 

Let us substitute the control (2.1) into the system (1.5) -(1.8). The averaged system is 

of the form 

de -=_ EP~ (1 + e) (1 - e2)“z 

dz pJmi% (2.2) 

dr Ep2 (1 - e2)5’g x 
ds - 1/m [$ - C,(l +g, (&-)“‘] + 0 ($) (2.3) 

do 
-_=o 
dz (2.4) 

It follows from (2.3) that the perigee height will increase only if the lift coefficient is 

sufficiently large 
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Cl = ,cJ>cx(;gy’(+$) (2.5) 

If the condition (2.5) is fulfilled then the action of the lift force is sufficient to count= 

eract the decrease of perigee height due to drag. With increase in orbit eccentricity, the 

value of C , necessary to increase the perigee height, decreases. The control (2.1) does 
Y 

not alter the location of the line of apsides. From (2.2) and (2.3) we have to within an ac- 

curacy of terms CCI h 

dr Cl 

i 

hr, 

1 

'I1 
A= _- 

+ ’ 
nC,2 + (1 - e) Cva 

de C, 2ne (1 + e) 2ne (1 + e) Cx2 (2.6) 

The solution is sought in the form of a series in the small parameter h; from (2.2) and 

(2.6) we get 

1/m+e,< h e(l+e,) 
f/l+e + J&T + z In e0 (1 + 4’ + (2.7) 

The control (2.1) allows for a drastic change in the satellite lifetime and its orbital 

elements. We will present some results of calculations. Figure 1 gives the dependence of 

the satellite time of motion on its orbital eccentricity for the motion with the control (2.1) 

(curve I) and the control 

C, (a) = { 
Cl> 0 for 0 < 6 <n 

-Ci<O for n<e<2rt 
(2.9) 

(curve 2) as well as for the ballistic (uncontrolled) motion (curve 3). Figttm 2 shows how 

the orbital perigee height varies in these cases. The initial conditions were the same as in 

the previous example; and it was also assumed that Cx = ICyI = 1. The control (2.9) leads 

to a lowering of the perigee height and a decrease in the lifetime of the satellite. If for the 

case of uncontrolled motion the entire duration was 52.3 days, then in the case of (2.9) the 

satellite existed less than 21 days. By varying the eccentricity from 0.4 to 0.2 the duration 

of motion with the control (2.1) is 120 days, the perigee height increased by more than 40 km 

with the result that the satellite attained the orbit where the maximum aerodynamic resist- 

ance is more than 10 times less than that in the orbit of an uncontrolled satellite. The ap 

proximate formulas (2.7) and (2.8) gr a ee well with the calculation results. 

3. Let us consider the satellite motion under the action of an aerodynamic force dir 

ected perpendicularly to the orbit plane. For simplicity of calculation we will assume 
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8 l/ a2 D3 c 

FIG. 1. FIG. 2. 

C,. = 0. To the system (1.5) -(l.E) we add the equations for the new osculating elements 

di epC, cos u (1 + 2e cos 8 + e2) -- 
dT-- vj (1 + e cos 8) 

dQ epC, sin u (1 + 2 e cos 6 + e2) 
-= 
dz lfa + e cos 8) sin i 

(3.1) 

do do d8 
z = ;Ei - co9 i x 

Here i is the orbit inclination, 0 is the longitude of the ascending node, o is the angle 

between the line of apsides and the ascending node, u = 8 + o is the argument of the lati- 

tads, aud C,, is the coefficient of the lateral aerodynamic force. We will compute the sys- 

tem of first approximation for (3.1) to within au accuracy of terms of the order of -sk-‘/’ 

di 3eZ - 8e - 3 _= &pa COSOC, (1 - e2P 
dT p1/m C If 

ALP I 

dQ ep, sin oC, (1 - e2P 3e2 - 8e - 3 
-A = p sin i JQZA 

i-k I 

do .dQ (3.2) 

85p ’ -&-= - cos 1 ;z- 

The first integrals of the system (3.2) are 

sin i, sin oo 
sin 0 = w--- 

stn 1 
cos 0 

D - 8, = arc sin 
cos 0, 

VI - sins io sina 0s 
- ttFQ sin 

VI - sin* io sin2 0o 

co9 i 
(3.3) 

arc sin - arc sin 
cos iu 

vi - sinz i, sin4 wo 7 - sina i, sin* oo 

=& 1rlz-t 
[ 

h (e0 - e) 
&,.(I + e) (1 + eo) I 

The time of flight is determined by (1.24). The system (3.2) has a particular solution 
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tll=a=o, 
C, i+e+ 

i--O=-ZY x [ In 1 + e, 
h (e0 - 4 

2rn, (1 + 4 (1 + eo) I (3.4) 

The solution (3.4) describes the basic effect of the lateral force on orbits with large 

eccentricity: the plane of the orbit rotates about the fixed line of apsides. This result has 

a simple physical explanation: basic braking occurs at the perigee on highly elongated 

orbits where the velocity vector is perpendicular to the radius vector of the satellite. The 

lateral aerodynamic force directed normally to the instantaneous plane of the motion rotates 

the velocity vector in a plane perpendicular to the radius vector and therefore the line of 

apsides remains unchanged. 

No particular difficulties are encountered in considering more complex manoeuvres of 

the satellite such as the rotation of the earth’s atmosphere. 

4. Let us consider the solution of the problem of planar relative motion of the satellite 

in orbits with high eccentricity. The restoring moment will be assumed small. In this case, 

the relative motion will be close to a uniform rotation. The analogous problem of the rela- 

tive motion of the satellite under the action of a small gravitational moment was solved in 

[ll, 121. The motions close to uniform rotation for a general second order equation were 

studied by N.N. Moiseev [13]. The motion of the satellite under the action of aerodynamic 

forces has a number of peculiarities connected with the evolution of the mass center orbit. 

We express the equations of motion relative to the mass center as 

Z$.. sin a (1 + 2e COS 6 + I?“) = 0 

x2 = eb 9 
b = rlmfF p 

J ’ 
f = sign F 

(4.1) 

Here I is the cross-sectional moment of inertia, 4 the angle between the axis of aero- 

dynamic symmetry and a certain fixed direction, and F the coefficient of the restoring mo- 

ment. 

The angle of attack a. is expressed through the angles tr, 4, and 6 according to the 

formula 

cI = arc sin cos (6 - cp + 8) + e ccs (o - cp) 

61 + 2e cos 6 + ea (4.2) 

The dependence of the aerodynamic drag coefficient on the angle of attack is approxi- 

mated by the formula 

c, = c.& - c, cos 2u (C,, > Cl > 0) 

Let us introduce a new variable z by the relation 

dq / dz = Q -I- xz 

where n is a constant. 

(4.3) 



478 1~. G. Evtushenko 

Then from (4.1) and (4.3) a system equivalent to the equation (4.11 is obtained 

dz 
-= 
dr 

_.+sina(l +2ecos6+e2), ‘z= Qtxz (4.4) 

The system (1.5)-(1.8) and (4.4) describes the relative motion of the satellite and the 

motion of its mass center. We will estimate the order of magnitude for the quantities in this 

system. The magnitude of the restoring moment depends on the design parameters of the 

satellite and the characteristic drag height rt. If S/2w = 0.0154 m’/kg set*. b = C 
.x 

= 1, 

then at an altitude of 150 km above the earth’s surface E = lo-’ and K = lo-’ ; at 

600 km altitude E = 2.3 x lo-’ and K = 4.8 x 10”. If the b coefficient is large, say 

b = lo”, then at an altitude of 150 and 600 km the quantity K is of the order of 10 and lo-’ 

respectively. 

Let us first consider the case when 

X-g17 E- X2 (4.51 

This condition is satisfied if the b coefficient is sufficiently small. 

We will use the term +esonance” whenever the frequency of relative motion iz and 

the frequency of orbital motion o are commensurable. It will be shown below that under 

the condition (4.5) in the non-resonance case in the first approximation in K, it is possible 

to consider the relative motion neglecting the measurement of the orbital elements because 

of the atmospheric action. In the resonance case such a separation is not permissible : the 

evolution of the orbital motion substantially alters the character of the relative motion. 

The system of equations in the first approximation for (4.4) will be ontained by aver- 

aging the right-hand parts over 7. In the non-resonance case the averaging can be carried 

out in two independent stages: over 4 and over 8. The averaging of the first equation of 

(4.4) yields a zero ; in the first approximation the relative motion is a rotation with a const- 

ant angular velocity. The aerodynamic moment does not affect the relative motion of the 

satellite. 

We will investigate the resonance case. It is assumed that the difference a - ~G_IS-t 

is a small quantity of order K where n and s are mutually simple natural numbers. Let us 

introduce new variables q and the phase y 

Here M is the mean anomaly. Within the accuracy of terms of order K the mean anomaly 

satisfies the equation 

dM/dz=o (4.61 

After a number of transformations and neglecting terms of order K’, a standard system 

follows from the equations (1.51, (1.61, (4.4) and (4.61 
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dz 
- +sina(l + 2ecos6+e2), d.r -= 

dr 
- = x (2 - q) 
dz 

(4.7) 

The dependence of M (8) is found from the Keplerian equations of motion. In the sys- 

tem (4.7) z, q and y are slowly varying functions. an d M is rapidly varying. We will aver- 

age by the Laplace method the right-hand parts of the system (4.7) over the period of fast 

motion equal to 277s in the variable M. The solution of the averaged system will approxi- 

mate to the exact solution of (4.7) with an error - K in the interval 7% Kc’. In the 

case s = 1, 2 the averaged system will be 

dz 

dt=- 
xof(i +e)l..(-I)? cos(a_y), 

2 JfZnh 

From (4.8) we find the equation for the angle y 

3xXkll (1 + e) 

b (1 - e) 

Cl cos (20 - 2r) + bf [I- (- 1)“lU - 4 ~0s (6 - 7) 
68 6 1 = 0 

Analogously for the case s > 2 we have 

3x280 (1 + e) C, 

(1 - e) b 
0 

(4.9) 

(4.10) 

The equations (4.9) and (4.10). describe the satellite motion relative to the angle 

Mn/s. From the system (4.8) we find the expression for the perturbation of the mean anomaly 

Substituting into (4.11) the functions y (7) which are the solutions of the equations 

(4.9) and (4.10) we will determine how the mean anomaly of orbital motion varies with the 

relative motion of the satellite. In the given approximation the perturbation of the mean 

anomaly is the only perturbation of the Keplerian motion. 

In the case of the main resonance (s = n = 1) we get from (4.9) the equation for the 

determination of the stationary resonance regimes 

cx, - Cl cos (20 - 2y) + c, cc@ (0 - y) = 0 
(4.12) 
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Solutions OI the equations (4.12) corres>ond to the values of the angle y for which 

the angle bet.Vs- en the bxi:-. of aerodynamic symmetry and mean anomaly remains constant. 

Such regimes are possible if the modulus o f the aerodynamic moment is sufficiently large. 

The stationary iegimes 

exist if CXO - C, ~< + C,. In order to establish stability of the stationary regimes we 

construct the equation in variations. Its characteristic equation will be 

p _I qQ;‘l-;) e, (>&)” [C ? sin (0 - yo) - 2C, sin (2a - 2yJl = 0 (4.13) 

If the roots of (4.13) are real, then the stationary regimes are unstable. On the phase 

plane (y, dy/d~) they correspond to singular saddle type points. If the roots of (4.13) are 

purely imaginary, the stationary regimes have focus characteristics. For s >/2 there are no 

stationary regimes. For sufficiently large values of the b coefficient and the height I~, the 

condition E % 0 (K’) is satisfied. In this case the first approximation may neglect the per- 

turbation of the satellite mass center motion. The equation of relative motion (4.9) is 

simplified. 

d”y 

dT” 
+ 

&of (1 -c e) -_. -cos(a-7) = 0 
I/:m (4.14) 

Resonance regimes are possible for s = 1 and any n. The equation (4.14) describes 

the rotational or oscillatory motions relative to the angleMn. Stationary regimes 

y = u + 0.5~ and y = 0 + 1.57~ correspond to the uniform rotation of the satellite whereby 

the axis of aerodynamic symmetry is perpendicular to the line of apsides at the instant of 

perigee passage. The regime y = D + 0.5~ is stable if the satellite is statically unstable 

(f < 0). The regime y = a + 1 SV is stable for f > 0. 

The terms of order xh-“‘z were neglected in the averaged system (4.8). A more accurate 

computation of the right-hand parts in (4.8) is equivalent to the refinement of the coeffici- 

ents C ro, C, and C,; qualitatively the character of the relative motion is not altered. 

In conclusion, the author takes the opportunity to thank N.N. Moiseev for valuable 

advice and discussions. 
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